Extensions 1→N→G→Q→1 with N=C22xC6 and Q=C3xC6

Direct product G=NxQ with N=C22xC6 and Q=C3xC6
dρLabelID
C2xC63432C2xC6^3432,775

Semidirect products G=N:Q with N=C22xC6 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C22xC6):(C3xC6) = S3xC6xA4φ: C3xC6/C3C6 ⊆ Aut C22xC6366(C2^2xC6):(C3xC6)432,763
(C22xC6):2(C3xC6) = A4xC62φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6):2(C3xC6)432,770
(C22xC6):3(C3xC6) = D4xC32xC6φ: C3xC6/C32C2 ⊆ Aut C22xC6216(C2^2xC6):3(C3xC6)432,731
(C22xC6):4(C3xC6) = C3xC6xC3:D4φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6):4(C3xC6)432,709
(C22xC6):5(C3xC6) = S3xC2xC62φ: C3xC6/C32C2 ⊆ Aut C22xC6144(C2^2xC6):5(C3xC6)432,772

Non-split extensions G=N.Q with N=C22xC6 and Q=C3xC6
extensionφ:Q→Aut NdρLabelID
(C22xC6).(C3xC6) = C3xDic3xA4φ: C3xC6/C3C6 ⊆ Aut C22xC6366(C2^2xC6).(C3xC6)432,624
(C22xC6).2(C3xC6) = A4xC36φ: C3xC6/C6C3 ⊆ Aut C22xC61083(C2^2xC6).2(C3xC6)432,325
(C22xC6).3(C3xC6) = C4xC9:A4φ: C3xC6/C6C3 ⊆ Aut C22xC61083(C2^2xC6).3(C3xC6)432,326
(C22xC6).4(C3xC6) = C12xC3.A4φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6).4(C3xC6)432,331
(C22xC6).5(C3xC6) = C4xC32.A4φ: C3xC6/C6C3 ⊆ Aut C22xC6363(C2^2xC6).5(C3xC6)432,332
(C22xC6).6(C3xC6) = C4xC32:A4φ: C3xC6/C6C3 ⊆ Aut C22xC6363(C2^2xC6).6(C3xC6)432,333
(C22xC6).7(C3xC6) = A4xC2xC18φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6).7(C3xC6)432,546
(C22xC6).8(C3xC6) = C22xC9:A4φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6).8(C3xC6)432,547
(C22xC6).9(C3xC6) = C2xC6xC3.A4φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6).9(C3xC6)432,548
(C22xC6).10(C3xC6) = C22xC32.A4φ: C3xC6/C6C3 ⊆ Aut C22xC636(C2^2xC6).10(C3xC6)432,549
(C22xC6).11(C3xC6) = C22xC32:A4φ: C3xC6/C6C3 ⊆ Aut C22xC636(C2^2xC6).11(C3xC6)432,550
(C22xC6).12(C3xC6) = A4xC3xC12φ: C3xC6/C6C3 ⊆ Aut C22xC6108(C2^2xC6).12(C3xC6)432,697
(C22xC6).13(C3xC6) = C22:C4xC3xC9φ: C3xC6/C32C2 ⊆ Aut C22xC6216(C2^2xC6).13(C3xC6)432,203
(C22xC6).14(C3xC6) = C22:C4xHe3φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6).14(C3xC6)432,204
(C22xC6).15(C3xC6) = C22:C4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6).15(C3xC6)432,205
(C22xC6).16(C3xC6) = D4xC3xC18φ: C3xC6/C32C2 ⊆ Aut C22xC6216(C2^2xC6).16(C3xC6)432,403
(C22xC6).17(C3xC6) = C2xD4xHe3φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6).17(C3xC6)432,404
(C22xC6).18(C3xC6) = C2xD4x3- 1+2φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6).18(C3xC6)432,405
(C22xC6).19(C3xC6) = C22:C4xC33φ: C3xC6/C32C2 ⊆ Aut C22xC6216(C2^2xC6).19(C3xC6)432,513
(C22xC6).20(C3xC6) = C32xC6.D4φ: C3xC6/C32C2 ⊆ Aut C22xC672(C2^2xC6).20(C3xC6)432,479
(C22xC6).21(C3xC6) = Dic3xC62φ: C3xC6/C32C2 ⊆ Aut C22xC6144(C2^2xC6).21(C3xC6)432,708
(C22xC6).22(C3xC6) = C22xC4xHe3central extension (φ=1)144(C2^2xC6).22(C3xC6)432,401
(C22xC6).23(C3xC6) = C22xC4x3- 1+2central extension (φ=1)144(C2^2xC6).23(C3xC6)432,402
(C22xC6).24(C3xC6) = C24xHe3central extension (φ=1)144(C2^2xC6).24(C3xC6)432,563
(C22xC6).25(C3xC6) = C24x3- 1+2central extension (φ=1)144(C2^2xC6).25(C3xC6)432,564

׿
x
:
Z
F
o
wr
Q
<